Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-camera Setup

نویسندگان

  • Jens Puwein
  • Luca Ballan
  • Remo Ziegler
  • Marc Pollefeys
چکیده

In this paper we propose an approach to jointly perform camera pose estimation and human pose estimation from videos recorded by a set of cameras separated by wide baselines. Multi-camera pose estimation is very challenging in case of wide baselines or in general when patch-based feature correspondences are difficult to establish across images. For this reason, we propose to exploit the motion of an articulated structure in the scene, such as a human, to relate these cameras. More precisely, we first run a part-based human pose estimation for each camera and each frame independently. Correctly detected joints are then used to compute an initial estimate of the epipolar geometry between pairs of cameras. In a combined optimization over all the recorded sequences, the multi-camera configuration and the 3D motion of the kinematic structure in the scene are inferred. The optimization accounts for time continuity, part-based detection scores, optical flow, and body part visibility. Our approach was evaluated on 4 publicly available datasets, evaluating the accuracy of the camera poses and the human poses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

Mo2Cap2: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera

We propose the first real-time approach for the egocentric estimation of 3D human body pose in a wide range of unconstrained everyday activities. This setting has a unique set of challenges, such as mobility of the hardware setup, and robustness to long capture sessions with fast recovery from tracking failures. We tackle these challenges based on a novel lightweight setup that converts a stand...

متن کامل

MoCap: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera

We propose the first real-time approach for the egocentric estimation of 3D human body pose in a wide range of unconstrained everyday activities. This setting has a unique set of challenges, such as mobility of the hardware setup, and robustness to long capture sessions with fast recovery from tracking failures. We tackle these challenges based on a novel lightweight setup that converts a stand...

متن کامل

GHand: A GPU Algorithm for Realtime Hand Pose Estimation Using Depth Camera

We present GHand, a GPU algorithm for markerless hand pose estimation from a single depth image obtained from a commodity depth camera. Our method uses a dual random forest approach: the first forest estimates position and orientation of hand in 3D, while the second forest determines the joint angles of the kinematic chain of our hand model. GHand runs entirely on GPU, at a speed of 64 FPS with...

متن کامل

3D Human Body Pose Estimation by Superquadrics

Abstract: This paper presents a method for 3D Human Body pose estimation by using a multi-camera system. The pose is estimated by RANSAC-object search with a robust least square fitting of 3D points to SuperQuadric (SQ) models of the searched object. The solution is verified by evaluating the matching score between the SQ object model and 3D real data captured by a multi-camera system and segme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014